IMRT/IGRT Patient Treatment: A Community Hospital Experience

Charles M. Able, Assistant Professor

Wake Forest University
School of Medicine
I have no research support or financial interest to disclose.
1. Review a typical IMRT/IGRT implementation process.

2. Have an understanding of IMRT/IGRT program development at High Point Regional Hospital.

3. Understand the elements of our IGRT system quality assurance program.
▪ 400 Bed Community Hospital

▪ Radiation Oncology Department
 ▪ External Beam Therapy
 ▪ 340 New External Beam Patients each Year
 ▪ Average Daily census: 35 patients
 ▪ PET-CT Simulator
 ▪ MLC based IMRT & 3D conformal
 ▪ Two accelerators: One with KV Imaging capability

▪ Brachytherapy program includes:
 ▪ HDR – Prostate, Partial Breast, Lung, GYN
 ▪ LDR – Prostate seed implants
IGRT Committee

- **Membership:** medical director, physicist, dosimetrist, therapist, and administrative director

- **Exhaustive literature review**
 - Body sites that benefit from IGRT
 - Process: implantable markers, 2D imaging, CBCT
 - Immobilization
 - Margin reduction, dose escalation
 - Quality assurance of equipment and treatment
 - Inter vs Intra fraction motion and repeat imaging
Results of Literature Review

- **Major Reality Check**
- Prostate and H & N IMRT patients may benefit most

IGRT Billing Requirements

- Level of physician supervision
- Documentation of daily correction
- No portal images
- Who implants markers? Who pays for markers?
Implementation Process

- Prostate IMRT/IGRT
 - 2D (AP & LAT) Marker Position Match Preferred
 - Superior to bony anatomical matching
 - Superior to CBCT because soft tissue delineation is relatively poor

- Urologist places gold seeds in office

- Daily patient shift/correction is documented on patient specific Excel spreadsheet
Shift Calculation for IGRT

<table>
<thead>
<tr>
<th>Date</th>
<th>Physician Initials</th>
<th>Therapist Initials</th>
<th>Vert (cm)</th>
<th>Lng (cm)</th>
<th>Lat (cm)</th>
<th>Calculated Vector Shift (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/10/2007</td>
<td>BF</td>
<td>CF</td>
<td>-0.9</td>
<td>0.9</td>
<td>-0.2</td>
<td>1.29</td>
</tr>
<tr>
<td>10/10/2007</td>
<td>BF</td>
<td>CF</td>
<td>-0.1</td>
<td>0.1</td>
<td>0</td>
<td>0.14</td>
</tr>
<tr>
<td>10/11/2007</td>
<td>BF</td>
<td>CF</td>
<td>-1.2</td>
<td>0.8</td>
<td>-0.4</td>
<td>1.50</td>
</tr>
<tr>
<td>10/11/2007</td>
<td>BF</td>
<td>CF/LL</td>
<td>-0.1</td>
<td>0.3</td>
<td>0</td>
<td>0.32</td>
</tr>
<tr>
<td>10/12/2007</td>
<td>JP</td>
<td>LL</td>
<td>-1.7</td>
<td>0.9</td>
<td>0</td>
<td>1.92</td>
</tr>
<tr>
<td>10/12/2007</td>
<td>JP</td>
<td>LL</td>
<td>0.2</td>
<td>0.1</td>
<td>-0.1</td>
<td>0.24</td>
</tr>
<tr>
<td>10/15/2007</td>
<td>bf</td>
<td>ll</td>
<td>-1.6</td>
<td>0.8</td>
<td>-0.3</td>
<td>1.81</td>
</tr>
<tr>
<td>10/15/2007</td>
<td>bf</td>
<td>ll</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Criteria for Shifting
- < 0.50 cm: shift
- < 1.50 cm: shift and reimage
- > or = 1.50 cm: call physician
Prostate Mean Vector Correction Analysis

- Inter-Fraction
- Intra-Fraction

Patient Number

Magnitude (cm³)
H & N IMRT/IGRT

- Immobilization
 - Minimize rotational setup error – custom head holder
 - Use S-frame immobilization to fix head, neck, and shoulders

- Imaging (CBCT) Frequency
 - O.A. Zeidan et al – review of several different imaging protocols
 - CBCT every other day
 - Use running mean of CBCT shift on non-imaging treatment days
H & N IMRT/IGRT

What about changes as treatment progresses?

Physician reviews anatomical changes/surface contours relative to Tx Plan CT weekly

- <= 0.5cm – No Action
- 0.5cm > 1.5cm – Dosimetric review at discretion of MD
- >= 1.5cm – re-mask, re-scan, & dosimetric review of current IMRT plan
 - Move forward with current plan or re-plan and implement within 3-5 fractions (no break)
H & N IMRT/IGRT

▪ What do we align data set to?
 ▪ Physician discretion
 ▪ Standard initial alignment to C-6 and/or clivus
 ▪ Contour C-6 on Tx plan CT

NOW WE ARE READY TO START H&N IGRT USING CBCT!
Can we use IGRT on “This Patient”?

IGRT can be a benefit to many patients but…..

- Different body sites need different criterion
- Soft tissue alignment can be difficult – do you implant markers?
- How much inter-fraction motion is expected?
- How much intra-fraction motion…gating?
A quality assurance program for the on-board imager

Sua Yoo
Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710

Gwe-Ya Kim
Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305

Rabih Hammoud
Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan 48202

Eric Elder
Department of Radiation Oncology, Emory University, Atlanta, Georgia 30322

Todd Pawlicki
Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305

Huaiqun Guan
Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan 48202

Timothy Fox
Department of Radiation Oncology, Emory University, Atlanta, Georgia 30322

Gary Luxton
Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305

Fang-Fang Yin
Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710

Peter Munro
Varian Medical System, Palo Alto, California 94304

(Received 9 June 2006; revised 20 September 2006; accepted for publication 20 September 2006; published 31 October 2006)
Program Elements

- Safety and Functionality QA
- Geometrical Accuracy QA
- Image Quality QA
Daily QA Tests

- Verify the functionality of all safety systems
 - Door Interlock
 - Warning Lights
 - Collision Interlocks

- Imaging Isocenter Accuracy

- Couch shift/positioning Accuracy

- Adds about 15 mins to daily accelerator QA
 Monthly QA Tests

- Magnification Accuracy
- Imaging Arm Positioning Integrity
- Imaging Isocenter accuracy versus Gantry Angle
IGRT System Quality Assurance

- Quarterly/Annual QA Tests
 - CBCT Image Quality
 - HU reproducibility
 - Low Contrast Resolution
 - HU Uniformity
 - In-slice spatial linearity
 - Slice thickness accuracy
Thank You for Your Attention!

